Visualizing elements of order 7 in the Tate-Shafarevich group of an elliptic curve

Tom Fisher

DPMMS
University of Cambridge

Workshop on Arithmetic of Hyperelliptic Curves ICTP, Trieste $\quad 7^{\text {th }}$ September 2017

Visibility (Mazur, 1999)

Exact sequence of abelian varieties over \mathbb{Q}

Definition. $\quad \operatorname{Vis}_{A} H^{1}(\mathbb{Q}, E)=\operatorname{im}(\delta)=\operatorname{ker}\left(\iota_{*}\right)$
Definition. $\quad \amalg(E / \mathbb{Q})=\operatorname{ker}\left(H^{1}(\mathbb{Q}, E) \rightarrow \prod_{v} H^{1}\left(\mathbb{Q}_{v}, E\right)\right)$

Examples of Visible ШI

We take $\left.A=\frac{E \times F}{\Delta} \quad \begin{array}{l}\Delta \subset E \\ \Delta \subset F\end{array}\right\} \begin{aligned} & \text { common finite } \\ & \text { Galois submodule }\end{aligned}$
Cremona and Mazur (2000)

$$
\begin{array}{ll}
\operatorname{dim} E=\operatorname{dim} F=1 & \Delta=E[n]=F[n] \\
& n=2,3,4,5
\end{array}
$$

Agashe and Stein (2005)

$$
\begin{array}{ll}
\operatorname{dim} E>1 \quad \operatorname{dim} F=1 & \Delta=F[n] \subset E[n] \\
& n=3,5,7, \ldots, 31
\end{array}
$$

This talk

$$
\begin{array}{lll}
\operatorname{dim} E=1 & \operatorname{dim} F=1 & \Delta=E[7]=F[7] \\
& \operatorname{dim} F=2 & \Delta=E[7]=F[3+\sqrt{2}]
\end{array}
$$

The Visibility Dimension

E / \mathbb{Q} elliptic curve.
Definition. The visibility dimension of $\xi \in \amalg(E / \mathbb{Q})$ is the least dimension of an abelian variety A such that $\xi \in \operatorname{Vis}_{A} H^{1}(\mathbb{Q}, E)$.

- Restriction of scalars shows vis $\operatorname{dim}(\xi) \leqslant \operatorname{order}(\xi)$
- Mazur (1999) : $\operatorname{order}(\xi)=3 \Longrightarrow$ vis $\operatorname{dim}(\xi) \leqslant 2$
- Fisher (2014) : $\exists \xi$ of orders 6 and 7 with vis $\operatorname{dim}(\xi)>2$

Observation. The visibility dimension is often much smaller than the bound coming from restriction of scalars.

Examples from Cremona's Tables

E / \mathbb{Q} with $\amalg(E / \mathbb{Q})[7] \neq 0$ (and no rational 7-isogeny)

E	F	E	F	E	F
$3364 c$	$10092 c$	$10800 y$	$10800 u$	$15219 c$	
$6552 y$	$6552 b a$	119700	$11970 s$	$17271 g$	
$6622 b$		$12927 e$	$12927 d$	$17816 c$	
$7139 a$		$13432 b$		$18513 b$	
$9450 p$	$9450 t$	$13673 a$		$18550 c$	
$9510 e$	$561090 *$	$14938 n$		$18832 a$	$1712 d$

We searched for rational points on twists of the Klein quartic

$$
X(7)=\left\{x^{3} y+y^{3} z+z^{3} x=0\right\} \subset \mathbb{P}^{2} .
$$

The appropiate twists are given by formulae of Halberstadt, Kraus and Poonen, Schaefer, Stoll.

Examples from Cremona's Tables

E / \mathbb{Q} with $\amalg(E / \mathbb{Q})[7] \neq 0$ (and no rational 7-isogeny)

E	F	E	F	E	F
$3364 c$	$10092 c$	$10800 y$	$10800 u$	$15219 c$	
$6552 y$	$6552 b a$	119700	$11970 s$	$17271 g$	x
$6622 b$		$12927 e$	$12927 d$	$17816 c$	x
$7139 a$	x	$13432 b$	x	$18513 b$	x
$9450 p$	$9450 t$	$13673 a$	x	$18550 c$	x
$9510 e$	$561090 *$	$14938 n$		$18832 a$	$1712 d$

In the cases indicated we found an elliptic curve F / \mathbb{Q} with $E[7] \cong F[7]$ and rank $F(\mathbb{Q})=2$. Therefore

$$
(\mathbb{Z} / 7 \mathbb{Z})^{2} \cong \frac{F(\mathbb{Q})}{7 F(\mathbb{Q})} \hookrightarrow H^{1}(\mathbb{Q}, E)
$$

First Example

$E=6622 b \quad N_{E}=6622=2 \times 7 \times 11 \times 43$.
There are 10 isogeny classes of this conductor, but the elliptic curves in the other 9 isogeny classes are not 7-congruent to E. However we find $f \in S_{2}\left(\Gamma_{0}(6622)\right)$ with

p	2	3	5	7	11	13
$a_{p}(E)$	-1	2	2	-1	1	6
$a_{p}(f)$	-1	$-\sqrt{2}-1$	$\sqrt{2}-2$	-1	1	$2 \sqrt{2}-2$
$a_{p}(f) \equiv a_{p}(E)$	$\bmod (3+\sqrt{2})$	for all p				

Question. Can we find C / \mathbb{Q} genus 2 curve with

$$
\begin{aligned}
\operatorname{Trace}\left(a_{p}(f)\right) & =p+1-n_{1} \\
\operatorname{Norm}\left(a_{p}(f)\right) & =\left(n_{1}^{2}+n_{2}\right) / 2-(p+1) n_{1}-p
\end{aligned}
$$

where $n_{i}=\# \widetilde{C}\left(\mathbb{F}_{p^{i}}\right)$?
$E=6622 b \quad N_{E}=6622=2 \times 7 \times 11 \times 43$.
Question. Can we find C / \mathbb{Q} genus 2 curve with

$$
\begin{aligned}
\operatorname{Trace}\left(a_{p}(f)\right) & =p+1-n_{1} \\
\operatorname{Norm}\left(a_{p}(f)\right) & =\left(n_{1}^{2}+n_{2}\right) / 2-(p+1) n_{1}-p
\end{aligned}
$$

where $n_{i}=\# \widetilde{C}\left(\mathbb{F}_{p^{i}}\right)$?
Answer. Yes.

$$
\begin{aligned}
y^{2} & =20 x^{6}+44 x^{5}-23 x^{4}-10 x^{3}+81 x^{2}-52 x+4 \\
& =\operatorname{Norm}_{K / \mathbb{Q}}\left((-\alpha+1) x^{2}-\frac{\alpha^{2}+\alpha}{2} x+\alpha+3\right)
\end{aligned}
$$

where $K=\mathbb{Q}(\alpha)$ and $\alpha^{3}+\alpha^{2}+\alpha+17=0$.

Genus 2 Jacobians

Using formulae of Bending (1998) we found 35 similar examples with $N_{E}<10^{5}$ and F a genus 2 Jacobian with real multiplication by $\sqrt{2}$.

Remarks.

- These examples were found without having to compute any modular forms. However in most cases $N_{F}=N_{E}^{2}$ (up to powers of 2).
- In all but 3 cases we found rank $F(\mathbb{Q})=4$. Therefore

$$
(\mathbb{Z} / 7 \mathbb{Z})^{2} \cong \frac{F(\mathbb{Q})}{(3+\sqrt{2}) F(\mathbb{Q})} \hookrightarrow H^{1}(\mathbb{Q}, E)
$$

Favourite Example

$E=67080 r \quad N_{E}=67080=2^{3} \times 3 \times 5 \times 13 \times 43$.
We find $f \in S_{2}\left(\Gamma_{0}(13416)\right)$ with

p	2	3	5	7	11	13
$a_{p}(E)$	0	-1	-1	2	4	-1
$a_{p}(f)$	0	-1	$-\sqrt{2}-2$	$\sqrt{2}-2$	$-2 \sqrt{2}-2$	-1
$a_{p}(E) \equiv a_{p}(f)$	$\bmod (3+\sqrt{2})$	for all $p \neq 5$				

Genus 2 curve $C / \mathbb{Q}: \quad y^{2}=x(x+4)\left(x^{4}+2 x^{3}-x-3\right)$.
Following Poonen, Schaefer, Stoll:
$J=\operatorname{Jac}\left(X_{E}(7)\right): \quad \operatorname{rank} J(\mathbb{Q})=2<3=\operatorname{dim} J \quad$ (under GRH)
Chabauty + Mordell-Weil sieve gives $\# X_{E}(7)(\mathbb{Q})=2$.
Conclusion. Every non-trivial element of $\amalg(E / \mathbb{Q}) \cong(\mathbb{Z} / 7 \mathbb{Z})^{2}$ has visibility dimension exactly 3.

Checking the Congruences

We must prove $E[7]=F[3+\sqrt{2}]$ as Galois modules.
Possible methods.
(1) Fix F. Find the twist of the Klein quartic parametrising the elliptic curves E with $E[7]=F[3+\sqrt{2}]$.
(2) Use modularity (Ribet, Khare, Wintenberger) Bottlenecks: Computing modular forms. Computing 2-part of conductor. Possible variant : Use Faltings-Serre method.
(3) Exhibit torsion points on $E / \pm 1$ and $F / \pm 1$ with the same field of definition. (Following Kraus, Oesterle (1992)).

We used method 3.

Checking Local Solubility

Using F / \mathbb{Q} with $\operatorname{dim} F=1$ or 2 we have exhibited

$$
(\mathbb{Z} / 7 \mathbb{Z})^{2} \hookrightarrow H^{1}(\mathbb{Q}, E)
$$

Question. Do we get elements of $\amalg(E / \mathbb{Q})$?
We have $\Delta=E[7]=F[\phi]$ where $\phi=7$ or $3+\sqrt{2}$.
The Selmer groups $S^{(7)}(E / \mathbb{Q})$ and $S^{(\phi)}(F / \mathbb{Q})$ are subgroups of $H^{1}(\mathbb{Q}, \Delta)$ defined by local conditions.
If these local conditions match up, we do get elements of $\amalg(E / \mathbb{Q})$. This is true in all cases checked so far.

Examples from Cremona's Tables (revisited)

E / \mathbb{Q} with $Ш(E / \mathbb{Q})[7] \neq 0$ (and no rational 7-isogeny)

E	F	E	F	E	F
$3364 c$	$10092 c$	$10800 y$	$10800 u$	$15219 c$	genus 2
$6552 y$	$6552 b a$	119700	$11970 s$	$17271 g$	x
$6622 b$	genus 2	$12927 e$	$12927 d$	$17816 c$	x
$7139 a$	x	$13432 b$	x	$18513 b$	x
$9450 p$	$9450 t$	$13673 a$	x	$18550 c$	x
$9510 e$	$561090 *$	$14938 n$	genus 2	$18832 a$	$1712 d$

The examples with F / \mathbb{Q} a genus 2 Jacobian have

$$
E[7] \cong F[3+\sqrt{2}] .
$$

Further Examples (in progress)

E / \mathbb{Q} with $\amalg(E / \mathbb{Q})[11] \neq 0$

E	F	E	F	E	F
8350c	genus 2	$36166 j$		$52416 d m$	$52416 d l$
13790a	genus 2				
$36762 h$	x	$55660 v$			
14570c		$38088 t$	$38088 u$	$56144 v$	genus 2
20806a	x	$40755 n$	x	$58029 f$	genus 2
30940a	x	$44082 c$	genus 2	$58558 e$	genus 2
36076b	x	$49450 k$	x	$61275 j$	x

The examples with F / \mathbb{Q} a genus 2 Jacobian have

$$
E[11] \cong F[4-\varphi] \quad \text { where } \varphi=\frac{1+\sqrt{5}}{2}
$$

