Visualizing elements of order 7 in the Tate-Shafarevich group of an elliptic curve

Tom Fisher

DPMMS University of Cambridge

Workshop on Arithmetic of Hyperelliptic Curves ICTP, Trieste 7th September 2017

Visibility (Mazur, 1999)

Exact sequence of abelian varieties over \mathbb{Q}

Examples of Visible III

We take
$$A = \frac{E \times F}{\Delta}$$
 $\Delta \subset E$
 $\Delta \subset F$ common finite
Galois submodule
Cremona and Mazur (2000)
dim $E = \dim F = 1$ $\Delta = E[n] = F[n]$
 $n = 2, 3, 4, 5$
Agashe and Stein (2005)
dim $E > 1$ dim $F = 1$ $\Delta = F[n] \subset E[n]$
 $n = 3, 5, 7, \dots, 31$
This talk
dim $E = 1$ dim $F = 1$ $\Delta = E[7] = F[7]$
dim $F = 2$ $\Delta = E[7] = F[3 + \sqrt{2}]$

 E/\mathbb{Q} elliptic curve.

Definition. The *visibility dimension* of $\xi \in \text{III}(E/\mathbb{Q})$ is the least dimension of an abelian variety *A* such that $\xi \in \text{Vis}_A H^1(\mathbb{Q}, E)$.

- Restriction of scalars shows vis dim $(\xi) \leq \operatorname{order}(\xi)$
- Mazur (1999) : order(ξ) = 3 \implies vis dim(ξ) \leqslant 2
- Fisher (2014) : $\exists \xi$ of orders 6 and 7 with vis dim $(\xi) > 2$

Observation. The visibility dimension is often much smaller than the bound coming from restriction of scalars.

 E/\mathbb{Q} with $\operatorname{III}(E/\mathbb{Q})[7] \neq 0$ (and no rational 7-isogeny)

Е	F	Е	F	E	F
3364 <i>c</i>	10092 <i>c</i>	10800 <i>y</i>	10800 <i>u</i>	15219 <i>c</i>	
6552 <i>y</i>	6552 <i>ba</i>	11970 <i>o</i>	11970 <i>s</i>	17271 <i>g</i>	
6622 <i>b</i>		12927 <i>e</i>	12927 <i>d</i>	17816 <i>c</i>	
7139 <i>a</i>		13432 <i>b</i>		18513 <i>b</i>	
9450 <i>p</i>	9450 <i>t</i>	13673 <i>a</i>		18550 <i>c</i>	
9510 <i>e</i>	561090 *	14938 <i>n</i>		18832 <i>a</i>	1712 <i>d</i>

We searched for rational points on twists of the Klein quartic

$$X(7) = \{x^3y + y^3z + z^3x = 0\} \subset \mathbb{P}^2.$$

The appropiate twists are given by formulae of Halberstadt, Kraus and Poonen, Schaefer, Stoll.

E/\mathbb{Q} with $\operatorname{III}(E/\mathbb{Q})[7] \neq 0$ (and no rational 7-isogeny)

Е	F	Е	F	E	F
3364 <i>c</i>	10092 <i>c</i>	10800 <i>y</i>	10800 <i>u</i>	15219 <i>c</i>	
6552 <i>y</i>	6552 <i>ba</i>	11970 <i>o</i>	11970 <i>s</i>	17271 <i>g</i>	Х
6622 <i>b</i>		12927 <i>e</i>	12927 <i>d</i>	17816 <i>c</i>	Х
7139 <i>a</i>	Х	13432 <i>b</i>	X	18513 <i>b</i>	Х
9450 <i>p</i>	9450 <i>t</i>	13673 <i>a</i>	X	18550 <i>c</i>	Х
9510 <i>e</i>	561090 *	14938 <i>n</i>		18832 <i>a</i>	1712 <i>d</i>

In the cases indicated we found an elliptic curve F/\mathbb{Q} with $E[7] \cong F[7]$ and rank $F(\mathbb{Q}) = 2$. Therefore

$$(\mathbb{Z}/7\mathbb{Z})^2 \cong rac{F(\mathbb{Q})}{7F(\mathbb{Q})} \hookrightarrow H^1(\mathbb{Q}, E).$$

First Example

E = 6622b $N_E = 6622 = 2 \times 7 \times 11 \times 43.$

There are 10 isogeny classes of this conductor, but the elliptic curves in the other 9 isogeny classes are not 7-congruent to *E*. However we find $f \in S_2(\Gamma_0(6622))$ with

$$a_p(f) \equiv a_p(E) \mod (3+\sqrt{2})$$
 for all p

Question. Can we find C/\mathbb{Q} genus 2 curve with

Trace
$$(a_p(f)) = p + 1 - n_1$$

Norm $(a_p(f)) = (n_1^2 + n_2)/2 - (p+1)n_1 - p_1$

where $n_i = \#\widetilde{C}(\mathbb{F}_{p^i})$?

E = 6622b $N_E = 6622 = 2 \times 7 \times 11 \times 43.$

Question. Can we find C/\mathbb{Q} genus 2 curve with

Trace
$$(a_p(f)) = p + 1 - n_1$$

Norm $(a_p(f)) = (n_1^2 + n_2)/2 - (p+1)n_1 - p_1$

where
$$n_i = \#\widetilde{C}(\mathbb{F}_{p^i})$$
?

Answer. Yes.

$$y^{2} = 20x^{6} + 44x^{5} - 23x^{4} - 10x^{3} + 81x^{2} - 52x + 4$$
$$= \operatorname{Norm}_{K/\mathbb{Q}} \left((-\alpha + 1)x^{2} - \frac{\alpha^{2} + \alpha}{2}x + \alpha + 3 \right)$$
where $K = \mathbb{Q}(\alpha)$ and $\alpha^{3} + \alpha^{2} + \alpha + 17 = 0$.

Using formulae of Bending (1998) we found 35 similar examples with $N_E < 10^5$ and F a genus 2 Jacobian with real multiplication by $\sqrt{2}$.

Remarks.

- These examples were found *without* having to compute any modular forms. However in most cases $N_F = N_E^2$ (up to powers of 2).
- In all but 3 cases we found rank $F(\mathbb{Q}) = 4$. Therefore

$$(\mathbb{Z}/7\mathbb{Z})^2 \cong \frac{F(\mathbb{Q})}{(3+\sqrt{2})F(\mathbb{Q})} \hookrightarrow H^1(\mathbb{Q}, E).$$

Favourite Example

E = 67080r $N_E = 67080 = 2^3 \times 3 \times 5 \times 13 \times 43.$ We find $f \in S_2(\Gamma_0(13416))$ with

$$a_{
ho}(E)\equiv a_{
ho}(f)\mod (3+\sqrt{2})$$
 for all $p
eq 5$

Genus 2 curve C/\mathbb{Q} : $y^2 = x(x+4)(x^4+2x^3-x-3).$

Following Poonen, Schaefer, Stoll: $J = \text{Jac}(X_E(7))$: rank $J(\mathbb{Q}) = 2 < 3 = \dim J$ (under GRH) Chabauty + Mordell-Weil sieve gives $\#X_E(7)(\mathbb{Q}) = 2$.

Conclusion. Every non-trivial element of $\operatorname{III}(E/\mathbb{Q}) \cong (\mathbb{Z}/7\mathbb{Z})^2$ has visibility dimension exactly 3.

We must prove $E[7] = F[3 + \sqrt{2}]$ as Galois modules.

Possible methods.

- Fix *F*. Find the twist of the Klein quartic parametrising the elliptic curves *E* with $E[7] = F[3 + \sqrt{2}]$.
- Use modularity (Ribet, Khare, Wintenberger) Bottlenecks : Computing modular forms. Computing 2-part of conductor. Possible variant : Use Faltings-Serre method.
- Solution Exhibit torsion points on $E/\pm 1$ and $F/\pm 1$ with the same field of definition. (Following Kraus, Oesterle (1992)).

We used method 3.

Using F/\mathbb{Q} with dim F = 1 or 2 we have exhibited

$$(\mathbb{Z}/7\mathbb{Z})^2 \hookrightarrow H^1(\mathbb{Q}, E).$$

Question. Do we get elements of $III(E/\mathbb{Q})$?

We have
$$\Delta = E[7] = F[\phi]$$
 where $\phi = 7$ or $3 + \sqrt{2}$.

The Selmer groups $S^{(7)}(E/\mathbb{Q})$ and $S^{(\phi)}(F/\mathbb{Q})$ are subgroups of $H^1(\mathbb{Q}, \Delta)$ defined by local conditions.

If these local conditions match up, we do get elements of $III(E/\mathbb{Q})$. This is true in all cases checked so far.

 E/\mathbb{Q} with $\operatorname{III}(E/\mathbb{Q})[7] \neq 0$ (and no rational 7-isogeny)

Е	F	E	F	E	F
3364 <i>c</i>	10092 <i>c</i>	10800 <i>y</i>	10800 <i>u</i>	15219 <i>c</i>	genus 2
6552 <i>y</i>	6552 <i>ba</i>	11970 <i>o</i>	11970 <i>s</i>	17271 <i>g</i>	X
6622 <i>b</i>	genus 2	12927 <i>e</i>	12927 <i>d</i>	17816 <i>c</i>	X
7139 <i>a</i>	X	13432 <i>b</i>	X	18513 <i>b</i>	X
9450 <i>p</i>	9450 <i>t</i>	13673 <i>a</i>	<u>x</u>	18550 <i>c</i>	X
9510 <i>e</i>	561090 *	14938 <i>n</i>	genus 2	18832 <i>a</i>	1712 <i>d</i>

The examples with F/\mathbb{Q} a genus 2 Jacobian have

 $E[7] \cong F[3+\sqrt{2}].$

E/\mathbb{Q} with $\operatorname{III}(E/\mathbb{Q})[11] \neq 0$

The examples with F/\mathbb{Q} a genus 2 Jacobian have

$$E[11] \cong F[4-\varphi]$$
 where $\varphi = \frac{1+\sqrt{5}}{2}$.